*AREA: Artificial Intelligence and Related Subjects*
*Rank 1:*
*AAAI: *American Association for AI National Conference
*IJCAI:* International Joint Conference on AI
*UAI: *Conference on Uncertainty in AI
*ICML:* International Conference on Machine Learning
*NIPS:* Neural Information Processing Systems
*Rank 2:*
*AID: *International Conference on AI in Design
*ECAI: *European Conference on AI
*IAAI:* Innovative Applications in AI
*ECML:* European Conf on Machine Learning
*ICNN/IJCNN: *Intl (Joint) Conference on Neural Networks
*ICPR: *Intl Conf on Pattern Recognition
*ICDAR: *International Conference on Document Analysis and Recognition
*CVPR*:
*Rank 3:*
*PRICAI:* Pacific Rim Intl Conf on AI
*AAI: *Australian National Conf on AI
*AI*IA: *Congress of the Italian Assoc for AI
*ANNIE: *Artificial Neural Networks in Engineering
*ANZIIS:* Australian/NZ Conf on Intelligent Inf. Systems
*CAIA: *Conf on AI for Applications
*CAAI: *Canadian Artificial Intelligence Conference
*ASADM: *Chicago ASA Data Mining Conf: A Hard Look at DM
*ICMS:* International Conference on Multi-agent Systems
*ASC: *Intl Conf on AI and Soft Computing
*AREA: Data Mining, KDD and Data Bases*
*Rank 1:*
*SIGKDD: *ACM Special Interest Group Conf on Knowledge Discovery in Data and
Data Mining
*SIGMOD: *ACM Special Interest Group Conf on Management Of Data
*PODS:* ACM SIGMOD Conf on Principles of DB Systems
*VLDB: *Very Large Data Bases
*ICDE: *Intl Conf on Data Engineering
*ICDM:* IEEE International Conference on Data Mining
*Rank 2:*
*PKDD: *Intl. Conf. on* *Principles and Practice of Knowledge Discovery in
Database
*PAKDD:* Pacific-Asia Conf on Knowledge Discovery & Data Mining
*SSD: *Intl Symp on Large Spatial Databases
*DEXA: *Database and Expert System Applications
*FODO:* Intl Conf on Foundation on Data Organization
*EDBT: *Extending DB Technology
*DOOD: *Deductive and Object-Oriented Databases
*DASFAA: *Database Systems for Advanced Applications
*CIKM: *Intl. Conf on Information and Knowledge Management
*SSDBM: *Intl Conf on Scientific and Statistical DB Mgmt
*Rank 3:*
*COMAD: *Intl Conf on Management of Data
*BNCOD: *British National Conference on Databases
*ADC: *Australasian Database Conference
*ADBIS: *Symposium on Advances in DB and Information Systems
*DaWaK* - Data Warehousing and Knowledge Discovery
*IDEAS *- International Database Engineering and Application Symposium
*Others:*
*NDB* - National Database Conference (China)
*KDDMBD* - Knowledge Discovery and Data Mining in Biological Databases
Meeting
*IDC(W)* - International Database Conference (HK CS)
*WebDB* - International Workshop on the Web and Databases
*SBBD: *Brazilian Symposium on Databases
*W2GIS* - International Workshop on Web and Wireless *Geographical
Information Systems*
*DOLAP* - International Workshop on Data Warehousing and OLAP
2008/9/9 pongba
> 人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索 这些无疑是 CS
> 领域最好玩的分支了(也是互相紧密联系的),也是最近我关注得比较多的领域。
> 打算集这里的牛人们之力,整理一个资源导引,不仅包括经典书籍,还有期刊,名人,Website 等网络资源,整理完了建一个页面保存起来(供瞻仰:P
> ):-)
> 我先列几个吧,比较初级和经典的,肯定有许多遗漏,请大家补充:
> 书籍:
> 1. 入门好书《Programming Collective Intelligence》,培养兴趣是最重要的一环,一上来看大部头很容易被吓走的:P
> 2. Peter Norvig 的 《AI, Modern Approach 2nd》(无争议的领域经典),上次讨论中 Shenli
> 使我开始看这本书了,建议有选择的看,部头还是太大了,比如我先看里面的概率推理部分的。
> 3. 《The Elements of Statistical Learning》,数学性比较强,可以做参考了。
> 4. 《Foundations of Statistical Natural Language Processing》,自然语言处理领域公认经典。
> 5. 《Data Mining, Concepts and Techniques》,华裔科学家写的书,相当深入浅出。
> 6. 《Managing Gigabytes》,信息检索经典。
> 7. 《Information Theory:Inference and Learning Algorithms》,参考书吧,比较深。
> 相关数学基础(参考,不是拿来通读的):
> 《矩阵分析》,Roger Horn。矩阵分析领域无争议的经典。
> 《概率论及其应用》,威廉·费勒。也是极牛的书。
> __ 哪位补充一本基本的线性代数的?
> 《Nonlinear Programming, 2nd》非线性规划的参考书。
> 《Convex Optimization》凸优化的参考书。
> 工具:
> 1. Weka (或知识发现大奖的数据挖掘开源工具集,非常华丽)
> Wikipedia:
> 这个可以不用列了,直接去上面一搜,反正到处都是超链接。
> 牛人:
> 这个要列表里面的 Ph.D 大大们群策群力来完成了。
> 期刊:
> 同上。
> P.S. 与认知科学交叉的一些资料请参考上次的一个帖子
> 。

没有评论:
发表评论