2009年5月12日星期二

机器学习与人工智能资源导引

相关国际会议等级分类列表
*AREA: Artificial Intelligence and Related Subjects*

*Rank 1:*

*AAAI: *American Association for AI National Conference

*IJCAI:* International Joint Conference on AI

*UAI: *Conference on Uncertainty in AI

*ICML:* International Conference on Machine Learning

*NIPS:* Neural Information Processing Systems

*Rank 2:*

*AID: *International Conference on AI in Design

*ECAI: *European Conference on AI

*IAAI:* Innovative Applications in AI

*ECML:* European Conf on Machine Learning

*ICNN/IJCNN: *Intl (Joint) Conference on Neural Networks

*ICPR: *Intl Conf on Pattern Recognition

*ICDAR: *International Conference on Document Analysis and Recognition

*CVPR*:

*Rank 3:*

*PRICAI:* Pacific Rim Intl Conf on AI

*AAI: *Australian National Conf on AI

*AI*IA: *Congress of the Italian Assoc for AI

*ANNIE: *Artificial Neural Networks in Engineering

*ANZIIS:* Australian/NZ Conf on Intelligent Inf. Systems

*CAIA: *Conf on AI for Applications

*CAAI: *Canadian Artificial Intelligence Conference

*ASADM: *Chicago ASA Data Mining Conf: A Hard Look at DM

*ICMS:* International Conference on Multi-agent Systems

*ASC: *Intl Conf on AI and Soft Computing

*AREA: Data Mining, KDD and Data Bases*

*Rank 1:*

*SIGKDD: *ACM Special Interest Group Conf on Knowledge Discovery in Data and
Data Mining

*SIGMOD: *ACM Special Interest Group Conf on Management Of Data

*PODS:* ACM SIGMOD Conf on Principles of DB Systems

*VLDB: *Very Large Data Bases

*ICDE: *Intl Conf on Data Engineering

*ICDM:* IEEE International Conference on Data Mining

*Rank 2:*

*PKDD: *Intl. Conf. on* *Principles and Practice of Knowledge Discovery in
Database

*PAKDD:* Pacific-Asia Conf on Knowledge Discovery & Data Mining

*SSD: *Intl Symp on Large Spatial Databases

*DEXA: *Database and Expert System Applications

*FODO:* Intl Conf on Foundation on Data Organization

*EDBT: *Extending DB Technology

*DOOD: *Deductive and Object-Oriented Databases

*DASFAA: *Database Systems for Advanced Applications

*CIKM: *Intl. Conf on Information and Knowledge Management

*SSDBM: *Intl Conf on Scientific and Statistical DB Mgmt

*Rank 3:*

*COMAD: *Intl Conf on Management of Data

*BNCOD: *British National Conference on Databases

*ADC: *Australasian Database Conference

*ADBIS: *Symposium on Advances in DB and Information Systems

*DaWaK* - Data Warehousing and Knowledge Discovery

*IDEAS *- International Database Engineering and Application Symposium

*Others:*

*NDB* - National Database Conference (China)

*KDDMBD* - Knowledge Discovery and Data Mining in Biological Databases
Meeting

*IDC(W)* - International Database Conference (HK CS)

*WebDB* - International Workshop on the Web and Databases

*SBBD: *Brazilian Symposium on Databases

*W2GIS* - International Workshop on Web and Wireless *Geographical
Information Systems*

*DOLAP* - International Workshop on Data Warehousing and OLAP

2008/9/9 pongba

> 人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索 这些无疑是 CS
> 领域最好玩的分支了(也是互相紧密联系的),也是最近我关注得比较多的领域。
> 打算集这里的牛人们之力,整理一个资源导引,不仅包括经典书籍,还有期刊,名人,Website 等网络资源,整理完了建一个页面保存起来(供瞻仰:P
> ):-)

> 我先列几个吧,比较初级和经典的,肯定有许多遗漏,请大家补充:

> 书籍:
> 1. 入门好书《Programming Collective Intelligence》,培养兴趣是最重要的一环,一上来看大部头很容易被吓走的:P
> 2. Peter Norvig 的 《AI, Modern Approach 2nd》(无争议的领域经典),上次讨论中 Shenli
> 使我开始看这本书了,建议有选择的看,部头还是太大了,比如我先看里面的概率推理部分的。
> 3. 《The Elements of Statistical Learning》,数学性比较强,可以做参考了。
> 4. 《Foundations of Statistical Natural Language Processing》,自然语言处理领域公认经典。
> 5. 《Data Mining, Concepts and Techniques》,华裔科学家写的书,相当深入浅出。
> 6. 《Managing Gigabytes》,信息检索经典。
> 7. 《Information Theory:Inference and Learning Algorithms》,参考书吧,比较深。

> 相关数学基础(参考,不是拿来通读的):
> 《矩阵分析》,Roger Horn。矩阵分析领域无争议的经典。
> 《概率论及其应用》,威廉·费勒。也是极牛的书。
> __ 哪位补充一本基本的线性代数的?
> 《Nonlinear Programming, 2nd》非线性规划的参考书。
> 《Convex Optimization》凸优化的参考书。

> 工具:
> 1. Weka (或知识发现大奖的数据挖掘开源工具集,非常华丽)

> Wikipedia:
> 这个可以不用列了,直接去上面一搜,反正到处都是超链接。

> 牛人:
> 这个要列表里面的 Ph.D 大大们群策群力来完成了。

> 期刊:
> 同上。

> P.S. 与认知科学交叉的一些资料请参考上次的一个帖子
> 。

没有评论:

发表评论